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FIG. 2. Jacobian coordinate systems for PsH.

tive transitions have attracted astrophysical attentions in that
they could contribute to stellar absorption spectra, and have
been investigated theoretically as well as photoionization pro-
cesses [22].

The radiative dissociation process has not been discussed in
detail for PsH(2,4S o). In contrast to the H−(3Pe), PsH(2,4S o)
has a number of dissociation channels. As shown in Fig. 1,
PsH(2,4S o) results in 2,4Pe continuum where H(nH = 2) +
Ps(nPs ≥ 1) and H(nH ≥ 1) + Ps(nPs = 2) dissociation thresh-
olds are located. Note that due to the even parity of L = 1
radiative dissociation into H(nH = 1) + Ps(nPs = 1) is for-
bidden. There could be a transition to the autoionizing state
embedded in the 2,4Pe continuum. Since the PsH(2,4S o) is lo-
cated just below the H(2p) + Ps(2p) dissociation threshold
energy, the structure of PsH(2,4S o) is expected to be a loosely
bound state of these excited atoms. As described by Mitroy
and Bromley, the lifetime of PsH(2,4S o) would be comparable
to the lifetimes of H(2p) and Ps(2p), in the order of 10−8-10−9

s [19].
In this paper, we calculate the radiation spectrum associ-

ated with the dissociative decay of PsH(2,4S o) based on the
variational method and complex coordinate rotation method
(CCRM) [23]. From the spectrum, we investigate the disso-
ciation channels of PsH(2,4S o) and its stability. The conver-
gence of the results is examined both in the length and veloc-
ity gauge calculations. Atomic units (a.u.; me = ! = e = 1)
are used throughout this paper, except where mentioned oth-
erwise.

II. THEORY

A. Radiative dissociation rates

We consider the four-body Hamiltonian H consisting of the
kinetic energy operators and all inter-particle Coulomb poten-
tial operators. The numerical method to calculate the radiative
dissociation rates of PsH(2,4S o) follows the method utilizing
the complex coordinate rotated wavefunction [23–26]. Noting

the bound state wavefunction of PsH(2,4S o) asΨi, the radiative
dissociation rate Γγ per unit photon energy can be calculated
as

dΓγ
dEγ
=

4
3
α3E3

γ

∣∣∣〈Ψf (Ef )|d|Ψi〉
∣∣∣2, (1)

where Eγ is the photon energy, α is fine-structure constant,
d is the electric dipole moment operator, and Ψf (Ef ) is the
wavefunction of PsH(2,4Pe) continuum state corresponding to
the energy Ef = Ei − Eγ, normalized per unit energy.

For numerical calculation of dΓγ/dEγ, we introduce the
complex rotated Hamiltonian Hθ where the distance r is scaled
by a complex factor of eiθ as r → reiθ. |Ψf (Ef )〉〈Ψf (Ef )| can be
expressed with the H(θ) and complex rotation operator R(θ) as

|Ψf (Ef )〉〈Ψf (Ef )| =
1

2iπ

[
R(−θ) 1

H(θ) − Ef
R(θ) − R(θ)

1
H(−θ) − Ef

R(−θ)
]

(2)

The eigenstates of Hθ, ψnθ, satisfies

Hθψnθ = Enθψnθ, (3)
〈ψ̄nθ|ψmθ〉 = δnm, (4)

where 〈ψ̄nθ| denotes complex-conjugate of ψnθ except for its
radial part. Utilizing the closure relation of

∑
n |ψmθ〉〈ψ̄nθ| = 1,

the dΓγ/dEγ can be written in terms of the eigenfunctions of
H(θ) as

dΓγ
dEγ
=

4
3
α3E3

γ

1
π

Im
∑

n

[ 〈ψ̄nθ|d(θ)|Ψiθ〉2
Enθ − Ef

]
, (5)

where d(θ) = R(θ)dR(−θ) is the rotated electric dipole mo-
ment operator, and Ψiθ = R(θ)Ψi is the rotated wavefunction
of the bound state.

In the present work we evaluate dΓγ/dEγ both in the length
and velocity gauges. In the length gauge, d(θ) is written as

d(θ) = −eiθ
(
rp→e−1 + re+→e−2

)
, (6)

where rp→e−1 is a vector from p to one of the electrons, e−1 , and
re+→e−2 is a vector from e+ to the other electron, e−2 . In the
velocity gauge,

d(θ) = −e−iθ

Eγ

(
1
µpe−1
∇p→e−1 +

1
µe+e−2

∇e+→e−2

)
, (7)

where µi j is the reduced mass between the particle i and j, and
∇i j is the differential operator associated with ri j. dΓγ/dEγ

would give the same results in the length and velocity gauges
if the Ψiθ and ψnθ were exact. However, as described above,
PsH(2,4Pe) continuum wavefunction in principle involves infi-
nite number of dissociation channels, which makes it difficult
to construct the exact scattering wavefunction. In this work,
Ψiθ and ψnθ are calculated in variational method for energy
and expanded in terms of the square integrable functions to
satisfy

〈Ψ̄iθ|H(θ)|Ψiθ〉 = Eiθ, (8)
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